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Abstract— Autonomous systems often operate in environ-
ments where the behavior of multiple agents is coordinated by
a shared global state. Reliable estimation of the global state is
thus critical for successfully operating in a multi-agent setting.
We introduce agent-aware state estimation—a framework for
calculating indirect estimations of state given observations of the
behavior of other agents in the environment. We also introduce
transition-independent agent-aware state estimation—a tractable
class of agent-aware state estimation—and show that it allows
the speed of inference to scale linearly with the number of
agents in the environment. As an example, we model traffic light
classification in instances of complete loss of direct observation.
By taking into account observations of vehicular behavior from
multiple directions of traffic, our approach exhibits accuracy
higher than that of existing traffic light-only HMM methods
on a real-world autonomous vehicle data set under a variety of
simulated occlusion scenarios.

I. INTRODUCTION

Autonomous systems often operate in environments where
the behavior of agents is governed by both their local state
and a shared global state which encapsulates important
aspects of the environment. Reliable estimation of the global
state is critical to robust multi-agent systems. Centrally
managed coordination signals, such as traffic lights for
autonomous vehicles [1], [2], [3], radio beacons for au-
tonomous aerial robots [4], [5], and distress signals for search
and rescue operations [6], [7], are particularly important
examples of shared global state. Improperly receiving or
interpreting these signals can cause catastrophic failures.

There are several methods used to mitigate such catas-
trophic failures. 1) Systems may choose to transfer partial
control to a human assistant [8], [9]. 2) Systems may choose
to gather additional information to reduce uncertainty [10]. 3)
Systems may choose to use limited communication to share
critical information between agents to mitigate risk [11]. In
high-stakes, partially observable environments where human
intervention, information gathering, and collaboration are
limited, these methods alone are insufficient. State estimation
must be robust enough to recover a global state when direct
perception fails, thus motivating the goal of our work.

Figure 1 depicts an example scenario. A blue autonomous
vehicle, modeled as an external observer, is approaching a
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Fig. 1. By observing intelligent agents in the environment, an autonomous
system can recover coordination signals despite prolonged total obstruction.

three-way intersection with two other agents: the red and
white human-operated vehicles. Due to glare on its sensors,
the blue vehicle cannot observe the traffic light, a crucial
element of the global state. However, by observing the red
vehicle turning and the white vehicle stopping, the blue
vehicle can properly recover the traffic light’s state without
direct observation or vehicle-vehicle communication.

A simple approach to state estimation is to use a Hid-
den Markov Model (HMM) or other graphical model to
smooth missing or erroneous observations. While HMMs
can smooth a signal in the presence of noise, they struggle
with total obstruction over long periods of time [12]. They
also struggle to incorporate complex information because,
in general, the number of states scales exponentially in the
number of variables [13], [14], and thus most modeling
attempts avoid using additional information to represent the
behavior of other agents. However, because HMMs work
well for temporal smoothing, they have been widely used in
multi-agent scenarios such as traffic light classification [15],
[16]. Dynamic Bayesian Networks (DBN) are a common
generalization of HMMs and Bayesian Networks that add
an internal Bayesian Network structure to the HMM. The
structure of DBNs must be given or learned and exact
inference may not be feasible in real-time [17].

Alternatively, state estimation and decision making can
be handled concurrently. A Partially Observable Markov
Decision Process (POMDP) [10] operates by maintaining and
updating a belief over states and can be extended to multi-
ple decentralized agents as a Decentralized POMDP (Dec-
POMDP) [18]. POMDPs and Dec-POMDPs, respectively
being NP and NEXP hard to solve optimally [19], [20], are



often intractable to use without simplifying assumptions and
an accurate joint model of all plausible agent interactions.

In this work we propose a novel framework for agent-
aware state estimation where noisy observations of state can
be combined with direct observations of other agents as they
execute a policy. The agent-aware state estimation frame-
work allows us to combine the benefits of an HMM with
additional information (policies that solve a Dec-MDP) via
a DBN representation to reconstruct the global coordination
signal in a robust, decision-theoretic manner.

Our key contributions include formalizing a general frame-
work for agent-aware state estimation and highlighting the
benefits of the transition-independence property. We provide
a DBN construction (Figure 2) for which inference is equiv-
alent to solving the transition-independent agent aware state
estimation problem. We apply this approach to the problem
of traffic light classification by an autonomous vehicle when
the traffic light may be obscured. We offer results on a real-
world data set of traffic light scenarios, where the behavior
of other vehicles from multiple directions of traffic is used
to gain information about the state of the intersection. Our
results show that our approach both exhibits higher accuracy
and is more robust than competing approaches that only use
direct image data of the traffic light.

II. BACKGROUND

We base our representation of an agent-aware state esti-
mation problem on a factored n-agent decentralized Markov
decision process (Dec-MDP), a formal decision making
framework closely related to Dec-POMDPs. Factored n-
agent Dec-MDPs model multi-agent cooperative problem-
solving in partially observable, stochastic environments using
a factored state representation, with the special property that
no part of the environment is hidden from every agent [20],
[21]. When combined with a known policy, such frameworks
allows for accurate and efficient state estimation.

A factored n-agent Dec-POMDP is defined by a tuple
〈I,S,A, T ,R,Ω, O〉. I is a set of n agents. S = S0 ×
S1 × · · · × Sn is a finite set of factored states: a global
state space S0 and a local state space Si>0 for each agent
i ∈ I. A = A1 × · · · × An is a finite set of joint actions:
an action set Ai for each agent i ∈ I. T : S × A × S →
[0, 1] is a transition function that represents the probability
T (s′|s,~a) = Pr(s′|s,~a) of reaching factored state s′ ∈ S
after performing joint action ~a ∈ A in factored state s ∈ S.
R : S ×A×S → R is a reward function that represents the
expected immediate reward R(s,~a, s′) of reaching factored
state s′ ∈ S after performing joint action ~a ∈ A in factored
state s ∈ S . Ω = Ω1 × · · · × Ωn is a finite set of joint
observations: an observation set Ωi for each agent i ∈ I.
O : A × S × Ω → [0, 1] is an observation function that
represents the probability O(~ω|~a, s) = Pr(~ω|~a, s) of joint
observation ~ω ∈ Ω after taking joint action ~a ∈ A and ending
up in factored state s ∈ S. A Dec-MDP is a specific class of

Dec-POMDP where for each joint observation ~ω ∈ Ω, there
exists some s ∈ S such that Pr(s|~ω) = 1.

A factored n-agent Dec-MDP is locally fully observable
if, for each local observation ωi ∈ Ωi and global state s0,
there exists some local state si such that Pr(si, s0|ωi) =
1. A factored n-agent Dec-MDP is transition independent
if the transition function T can be represented by a tu-
ple of transition probabilities (T0, T1, . . . , Tn) such that
T (s,~a, s′) = T0(s′0|s0)

∏n
i=1 Ti(s′i|si, ai). Transition inde-

pendent Dec-MDPs are simpler because they obviate the
need to use complex joint models. They can approximate
situations with weakly-coupled agents [22].

III. AGENT-AWARE STATE ESTIMATION

Informally, an agent-aware state estimation problem
(AASEP) is a problem where an external observer must
estimate state given observations of other agents as they
execute a policy to solve a decentralized decision problem.
The external observer receives noisy observations of the
state space that is factored into two components: 1) the
global state, whose transitions are unaffected by the agents
and 2) the joint local state, whose transitions are based on
both the global state, itself, and the actions of each agent.
These problems, called signalized problems, (Definition 1)
possess one-way independence as the global state acts as
a coordinating signal, influencing the actions of the agents,
while itself transitioning independently.

Definition 1. Given a factored state space S = S0 × SN ,
where S0 refers to the global state space, and SN = S1 ×
· · · × Sn refers to the joint local state space, a decision
problem is signalized if for every state s ∈ S, joint action
~a ∈ A, and successor state s′ ∈ S, the transition function T
can be written as a tuple of transition probabilities (T0, TN )
such that T (s′|s,~a) = T0(s′0|s0)TN (s′N |sN , s0,~a).

We now provide a more formal description of the AASEP.
First, the policies executed by the observed agents are a
solution to a signalized Dec-MDP, with the external observer
not included in the Dec-MDP. The choice of Dec-MDP is not
inherent to our approach; we also explore simpler models.

Second, we define a joint observation function Z and the
corresponding set of possible joint observationsO, accessible
only to the external observer and separate from definitions
internal to the signalized Dec-MDP (e.g. O or Ω). Thus, the
observer is modeled as receiving a sequence of observations
of each state factor as agents execute their individual policies.
The goal of the external observer (and thus the objective of
the AASEP) is to estimate the current state given the history
of noisy observations and their individual policies. A full
definition of the AASEP is provided in Definition 2.

Definition 2. An agent-aware state estimation problem
(AASEP) is defined by the tuple 〈M,Π,O,Z〉, where:

• M is a signalized Dec-MDP: 〈I,S,A, T , · ,Ω, O〉.



• Π = {π1, . . . , πn} is a set of stochastic policy trees
πi : Ωt × Ai → [0, 1] such that πi(~h, ai) = Pr(ai|~h)
defines the probability that agent i takes action ai with
history ~h of t observations ω1, ω2, . . . , ωt in M.

• O = O0 × O1 × · · · × On is a finite set of joint
observations: O0 are observations of a global state s0
and Oi>0 are observations of a local state si made by
the external observer.

• Z = {Z0,Z1, . . . ,Zn} is a set of observation functions
Zi : Si ×Oi → [0, 1] such that Zi(si, oi) = Pr(oi|si)
defines the probability that the external observer re-
ceives oi ∈ Oi from state factor si for each agent i.

In an AASEP, the observed agents have the potential
for complex interactions that provide negligible information
about global state. Additionally, to perform exact inference
and compute a solution, the external observer must form
a belief over the possible beliefs of the agents internal to
the Dec-MDP, who are themselves responding to private
observation histories ~h. For these reasons, approaching the
traffic light problem as an unstructured AASEP is im-
practical, and could come with significant computational
complexity. While AASEPs are quite general and worthy
of further study, for the remainder of this work we focus on
a subclass of problems that assumes full local observabil-
ity and transition-independence between agents: Transition-
Independent AASEPs (TI-AASEPs).

By assuming 1) different local states are transition-
independent from each other but not from global state and
2) agents can be well modeled with full knowledge of global
and local state, a TI-AASEP can be solved without modeling
complex agent interactions or estimating the beliefs of other
agents. We work to ensure these assumptions are met for all
agents included, but previous Dec-MDP literature suggests
that minor violations of transition-independence are handled
well in practice [22]. These assumptions allow us to specify
a TI-AASEP, formally defined in Definition 3.

Definition 3. A transition-independent agent-aware state
estimation problem (TI-AASEP) is an AASEP 〈M,Π,O,Z〉,
where M is transition-independent and locally fully ob-
servable, and Π is composed of policies that map from
S0×Si×Ai → [0, 1] such that πi(s0, si, ai) = Pr(ai|s0, si).

A TI-AASEP resolves many of the difficulties of an
AASEP. By modeling agents as though they have local
full observation, we can use a set of Markovian policies
(exchanging any ωi or ~h with s0 and si) to approximate
agent behavior. Additionally, the transition independence of
the Dec-MDP allows for considering the agents as nearly
totally separated, joined only by a shared global state.

Solving a TI-AASEP is equivalent to performing inference
with a tractable DBN— one with discrete variables and a
constant-sized conditional probability table at each node.
External observations O0 through On form evidence nodes,
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Fig. 2. A DBN for transition-independent agent-aware state estimation.

and the global state space state factor S0 is our target
for inference. The probabilistic relationships between the
evidence nodes O and global state S0 are characterized
through the observation functions Z , transition functions T ,
and stochastic agent policies Π.

Figure 2 shows the two-slice DBN representation of
a transition-independent AASEP (TI-AASEP). The purple
nodes represent an ordinary signal estimation HMM, which
models a global state s0’s relationship with an external ob-
server’s observation o0 ∈ O0. In blue, we have the standard
task of observing the state of agents in our environment. In
red, we have the agent model, or action node, which relates
the two tasks by depending on both prior local state and
global state (via the agent’s policy, πi). Due to the causal
dependence of all Oi on S0, we can improve our estimate
of S0 with far more data than if we were restricted to only
O0, direct external observations of global state.

To efficiently perform inference with the DBN, we can
convert it into a factor graph and perform the sum-product
message passing algorithm [23].

Proposition 1. Inference over t timesteps using n agents in
a TI-AASEP by applying the forward-backward sum-product
message passing algorithm to the DBN has worst-case time
complexity O(tnk2), where each node can take up to k
different discrete values.

Proof Sketch. The factor-graph representation of our t-
timestep unrolled DBN has O(tn) factors and O(tn) vari-
ables, for each node and evidence-node respectively. Each
variable performs at most k additions, over at most a k-
dimensional distribution, taking O(k2) time to summarize
a constant number of incoming messages. As the factor
graph is a tree of finite width, exactly one message needs
to be passed per edge per direction for an exact solution.
Therefore, the algorithm executes in O(tnk2) time, with a
constant number of summarizations per variable.



The worst-case time complexity O(tnk2) provides a desir-
able linear dependence on the number of agents in exchange
for the more strict assumptions of a TI-AASEP. Intuitively,
the worst-case time complexity of exact inference in the
general AASEP case has a superlinear dependency on n.
Thus, we see that the additional assumptions of transition-
independent agents and local full observability for the agents
improve the feasibility of runtime inference.

In practice, we observe that clearly interacting or ob-
structed agents can be removed from inference. This justifies
a locally fully observable transition-independent Dec-MDP,
at the cost of not always using every observation. In the
traffic scenario (Section I), this entails removing cars ob-
structed in their direction of travel. In the limit, removing
every agent reduces our model to an HMM over the global
state, a standard approach to traffic signal estimation.

Proposition 2. Inference of global state s0 over t timesteps
using zero agents in a TI-AASEP is equivalent to inference
of s0 in an HMM, where S0 is the set of hidden states and
O0 is the set of observations.

Proof Sketch. An HMM is a tuple 〈S, T ,O,Z〉, where S is
a state space that transitions based on a transition function T
and emits observations from a set O based on the observation
function Z . With no agents, a TI-AASEP only contains
global state factors (all elements with a nonzero subscript
disappear), and 〈S0, T0,O0,Z0〉 forms an HMM.

Proposition 2 states that inference done with a TI-AASEP
over no agents collapses to an HMM over the global state.
As a result of the construction of the DBN, estimates of
global state can only improve when agents are incorporated.
Under minor violations of the TI-AASEP’s assumptions, the
TI-AASEP still often serves as a robust approximate model
in practice. Finally, if fewer assumptions hold for a domain,
it may be better to model the problem as a full AASEP.

IV. TRAFFIC LIGHT CLASSIFICATION

To demonstrate the use of TI-AASEPs in practice, we
apply it to the task of traffic light classification as discussed
in Section I (Figure 1) for four-way intersections. This
requires partially specifying a Dec-MDP, creating a TI-
AASEP, and building the corresponding DBN, and results
in accurate realtime inference in the classification problem.

We first construct a signalized, transition-independent lo-
cally fully observable Dec-MDP M = 〈I,S,A, T , ·, ·, ·〉,
where each observed, unobstructed vehicle at the intersection
(excluding our own) is placed in the set of agents. The
global state space S0 includes the possible traffic light
states for the parallel and perpendicular directions of travel,
i.e. {RED,YELLOW,GREEN} × {RED,YELLOW,GREEN}.
Illegal light combinations (e.g. Green, Green) are given 0
probability. Due to transition-independence, any agent that
interacts with a pedestrian or other obstruction is removed
from I before inference.

Each agent i ∈ I has a corresponding local state space
Si, which is the cross product of its position discretized as
{ATINTERSECTION, TURNINGLEFT, DRIVINGSTRAIGHT,
TURNINGRIGHT} and velocity discretized as {NONE (0
m/s), LOW (1-5 m/s), HIGH (>5 m/s)}. Additionally we
split the agents into two groups, one for agents travelling
in the same direction of travel and one for the perpendicular
direction of travel. We represent actions as a cross product
between its steering inputs {LEFT, STRAIGHT, RIGHT} and
accelerator inputs {MINUS, ZERO, PLUS}. The transition
probabilities Ti are specified via a simple approximate
physics-based model for position and velocity, taking into
account steering inputs and accelerator inputs in a straight-
forward manner. The transition probabilities T0 for the traffic
signal are composed of a high probability self-transition, a
low probability transition to the next light configuration in a
predefined sequence, and a near zero probability for any out-
of-sequence light changes (e.g. from YELLOW to GREEN).

The TI-AASEP requires a set of joint observations O
representing perception of the light and other vehicles.
Each Oi>0 equals Si>0, as LiDAR was used to recon-
struct estimates of position and velocity directly, which
were then discretized. As vehicles can only directly ob-
serve the traffic light in their direction of travel, O0 =
{RED,YELLOW,GREEN}. With these observations alone,
the full global state cannot be reconstructed, as it includes a
separate light for each direction of travel. We also defined a
set of observation functions Z to describe sensor uncertainty
and occlusions. We specified Z0 to be 92% accurate and
Zi>0 at 95%. The final component is Π, the set of policies
that map local states to actions. Each agent policy πi is
described by a driver model that assumes drivers are fairly
stochastic but largely obey traffic laws. We can perform in-
ference given the constructed DBN as structured in Figure 2.

V. EXPERIMENTS

We compare AASE with a baseline HMM comparable to
a current standard in traffic light detection and classifica-
tion [16]. Both approaches are implemented in Python using
the library Pomegranate [24] for probabilistic models. Each
model uses a convolutional neural network with a YOLOv3
architecture [25], trained on the Bosch Small Traffic Light
data set [26], as the 30 Hz vision detector that gives direct
observations. All trials are run on an Intel i7-6700k CPU at
4.0 GHz with an Nvidia RTX 2070 Super GPU.

All experiments were run on a subset of the Argoverse
1.0 3D Tracking dataset scenarios [27] that contained traf-
fic lights. Argoverse is a dataset that includes both HD
maps of multiple cities and sensor data collected by a real
autonomous vehicle, along with ground truth vehicle and
pedestrian positions as labels at 10 Hz. This rich combination
of data is consumed by our multi-modal model, which
uses raw pixel data, vehicle annotations, and HD maps to
estimate the traffic light signals. From the Argoverse data
set, we chose 21 challenging scenarios that contain four-way



Fig. 3. A typical scenario of an intersection where the light is obscured by glare. The ground truth transition from red to green occurs at 2 s, and a black
line at 4 s denotes the first human reaction. The delay between the human and AASE is due to varying delays of the 3 cars at the intersection.

intersections with traffic lights and hand-labeled the ground
truth traffic light states. We provide these labels along with
our source code at https://github.com/ikhatri/AASE.

Table I records accuracy under several artificial occlusion
patterns. The columns of the table indicate occlusion lengths
as percentages of the time that the traffic light was visible in
each scenario. For all patterns, 0% indicates no observations
dropped and 100% indicates all observations dropped. The
HMM results with all traffic light observations dropped have
been omitted, as the behavior collapses to predicting red no
matter the scenario. Continuous(start) drops the first x%
of observations from the sequence, modeling a continuous
occlusion at the start of the scenario. Continuous(end) drops
the last x% of observations, modeling an occlusion at the end
of the scenario. Continuous(random) drops an x% length
duration from the scenario from a random starting point. For
each timestep, Discontinuous(random) drops each observa-
tion independently with x% probability. For both random
patterns, we average over 5 trials, and report standard error.
Accuracy is measured at 10 Hz via a 0–1 indicator loss
between ground truth and the output sequence of most likely
states (MLE) for each model, divided by the 3762 LiDAR
frames in the data set. We observe that the runtime of AASE
is roughly (40n+α) ms, where n is the number of agents and
α is a constant overhead, empirically verifying Proposition 1.

VI. DISCUSSION

To illustrate our approach, we analyze a real-world in-
tersection scenario in which the traffic light is completely
occluded (Figure 3). In this scenario, the YOLOv3 model
cannot detect the traffic light for the first 9 seconds due to
glare from the sun. If the AV only used direct estimates of
the light smoothed via an HMM to drive decision making,
it would never have driven into the intersection, gained
visibility of the traffic light, and discovered that the light was
green. In contrast, by watching the other cars, AASE retains
an accurate estimate of the light throughout the scenario,

TABLE I
CLASSIFICATION ACCURACY (%) FOR ALL INTERSECTION SCENARIOS

Occlusion Method 0% 20% 40% 60% 80% 100%

Cont(start) AASE 90.2 86.4 83.0 80.0 75.4 74.0
HMM 88.1 76.9 64.5 51.7 40.5 –

Cont(end) AASE 90.2 88.7 86.5 83.8 81.9 74.0
HMM 88.1 86.4 88.5 73.0 67.6 –

Cont(rand) AASE 90.2 88.0±0.6 85.8±0.3 84.0±0.1 77.7±0.7 74.0
HMM 88.1 85.4±0.5 79.0±1.6 75.6±0.5 62.6±1.6 –

Discont(rand) AASE 90.2 89.7±0.3 88.8±0.2 87.5±0.2 84.9±0.4 74.0
HMM 88.1 87.7±0.4 87.4±0.6 87.1±0.6 85.9±0.9 –

offset by a few seconds. In practice, other drivers’ latency
may add a human-like delay to AASE.

Table I shows the accuracy advantage that AASE has over
an HMM during signal degradation events. We explicitly
model two kinds of signal degradation: 1) continuous occlu-
sions, which simulate prolonged obstructions of the traffic
light and 2) discontinuous random patterns, which simulate
noisy observations from the neural network. As degradation
becomes severe, AASE uses observations of driver behavior
to maintain an acceptable traffic light estimate.

There are clear differences between AASE and the HMM
on each signal degradation pattern. On the continuous oc-
clusion patterns, AASE smoothly decreases to 74% as the
duration of the temporally extended occlusions increase from
20% to 100% of each scenario. At 80% occlusion, depending
on the temporal nature of the pattern, the HMM is 14% to
35% worse than AASE in accuracy, well outside the margin
of error. Moreover, in the case of continuous obstructions
starting a scenario, the HMM even falls below 50% accuracy
and totally fails at 100% occlusion.

An asymmetry between performance of the HMM on
starting versus ending obstructions is stark. This is due to
sequential models relying heavily on the earliest observations
to accurately initialize internal state, which, in the case of
traffic lights, changes fairly infrequently. In fact, in Figure 3,
we see that this real-world occluding glare example is of



the more damaging obstruction starting pattern, and thus the
HMM performs especially poorly, mirroring the simulations.

Finally, under the discontinuous noise pattern, both models
remain accurate despite increasingly many independently
dropped observations. This is because both models exploit an
internal HMM structure that connects direct observations of
the light to an estimate of the light state. Despite AASE using
a more complex DBN model, the internal HMM is preserved
and allows for it to be robust to random discontinuous
noise. AASE does not trade off accuracy between continuous
obstructions and discontinuous noise; rather, it improves or
matches performance across a broad spectrum of scenarios.

We observe similar advantages to those above in the
remaining scenarios, especially where the trained traffic light
detection model systematically fails. The Bosch data set used
for training lacked both horizontal traffic lights and nighttime
scenes, features present in a few of the Argoverse data
set scenarios. On these scenarios, the traffic light detection
model performed poorly. This provides us with realistic
failure profiles to compare AASE and HMM on their ability
to recover. While a better data set may improve detection, a
fleet of autonomous vehicles will likely be unable to totally
avoid out of sample scenarios or occlusion [28].

Our results show the benefits of using AASE to exploit
a range of observations. It takes advantage of information
often already collected (e.g. the position and behavior of
other vehicles) and this additional information can often be
collected with sensors that have failure modes independent
of sensors used to directly observe the traffic lights. Methods
such as LiDAR and radar are robust to glare, radar is robust
in snow and rain, and even cameras are less likely to have
multiple vehicles obstructed by glare or rain than the light
itself. However, AASE is not simply sensor fusion; using
AASE does not require pointing multiple sensors at the same
object. For instance, we are using LiDAR observations of
vehicles to update an estimate of the color of the traffic light,
which would not be possible with conventional sensor fusion.

VII. CONCLUSION

We propose the novel class of agent aware state esti-
mation problems (AASEPs) and present the agent-aware
state estimation framework to solve them. By modeling
agents as though they are solving a signalized Dec-MDP,
our framework can indirectly estimate state by observing
the behavior of the agents in the Dec-MDP. Additionally
we present a constrained form of AASEPs that enforces
transition independence (TI-AASEPs), prove that an exact
solution is linear with the number of agents, and that by
construction the performance is superior to an HMM which
ignores agents. Finally, we apply our TI-AASEP approach
to traffic light classification to show empirically that our
model retains a high accuracy in real-world occlusion sce-
narios where HMMs fail. Our approach combines various
autonomous system capabilities, such as agent models and

maps, to form an understanding of an intersection in real-
time and improves state estimation in multi-agent systems.
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