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Abstract— Autonomous systems often operate in environ-
ments where the behavior of all agents is mostly governed by
the perception of a specific feature of the environment. When
an autonomous system cannot recover this feature, there can be
disastrous consequences. We introduce a novel framework for
agent-aware state estimation that exploits the dependency of all
agents’ behavior on a feature to better indirectly observe the
feature. To allow for fast and accurate inference, we provide a
mapping of our framework to a dynamic Bayesian network and
show that speed of inference scales favorably with the number
of agents in the environment. We then apply our approach to
traffic light classification, focusing on instances where direct
vision of the light may be obstructed by glare, heavy rain,
vehicles, or other environmental factors. Finally, we show that
agent-aware state estimation outperforms prevailing methods
that only use direct image data of the traffic light on a real-
world autonomous vehicle data set of challenging scenarios.

I. INTRODUCTION

Autonomous systems often operate in high-stakes environ-
ments where the behavior of every agent is overwhelmingly
governed by the perception of a specific feature. This feature
can refer to any aspect of the environment that causes
a specific behavior as an immediate reaction, such as an
obstacle or a sign. We refer to this feature as a global signal:
global in that it is shared among all agents currently being
reasoned about and signal in that it strongly informs the
decision making of each agent. This kind of signal is often
seen in a wide range of practical applications, including
autonomous driving [1], [2], [3], space exploration [4], [5],
and search and rescue [6], [7], [8].

In scenarios where a system cannot always perceive the
global signal, the consequences can be disastrous. There
are several methods that can be used to mitigate such
catastrophic scenarios. If human assistance is available, the
agent may perform metareasoning and choose to transfer
control to a human [9]. When fully autonomous, information
gathering actions can be taken based on a belief that accounts
for all current uncertainty to avoid myopic, over-confident
behavior [10]. In settings with multiple collaborative agents,
cost-effective communication is desirable to ensure that if
one agent observes the global signal, it can be transmitted
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Fig. 1: By observing the behavior of intelligent agents, it is possible
to estimate global signals. Here, by watching other vehicles in the
environment, the blue autonomous vehicle can form a coherent
belief of the state of a traffic light without observing it directly.

so other agents can still act favorably [11]. However, in high-
stakes, partially observable multi-agent environments where
human intervention, information gathering, and inter-agent
communication is limited, state estimation must be robust
enough to recover global signals when perception fails.

Figure 1 depicts an example of the problem at hand. A blue
autonomous vehicle, the neutral observer, is approaching a
three-way intersection with two other agents: the red vehicle
and the white vehicle that are each operated by a human.
Given the limitations of its sensors, the blue autonomous
vehicle cannot observe the state of its traffic light, the
global signal, due to an obstruction like glare. However, by
observing the red vehicle turning and accelerating and the
white vehicle decelerating, the blue autonomous vehicle can
properly recover the state of its traffic light.

A simple approach to this form of state estimation is
to use hidden Markov models (HMM) or other graphical
models to smooth missing or erroneous observations [12].
Although HMMs can smooth a signal in the presence of
noise, total obstruction of the signal for long periods of
time is a considerable problem [13]. It is also difficult to
incorporate complex information into HMMs because the
number of states is in general exponential in the number of
variables [14]. Thus, HMM approaches typically avoid using
additional information representing the behavior of other
agents. However, because HMMs work well for temporal
smoothing, there have been many applications [15], including
in multi-agent scenarios like traffic light classification [16].
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Alternatively, state estimation and decision making can be
tackled concurrently by using a partially observable Markov
decision process (POMDP) [10]. The agent maintains a
distribution over possible states as a belief and updates it
with exact or approximate belief updates based on the current
observation and action. This can be applied to a decentral-
ized collaborative setting with multiple agents by using a
Decentralized POMDP (Dec-POMDP) [17]. Although the
belief can be updated in a provably correct way, there
are practical considerations that prevent POMDPs and Dec-
POMDPs from gaining widespread use. Principally, they are
challenging to solve exactly or even approximately in some
cases. Dec-POMDPs, without strict simplifying assumptions,
are particularly hard to solve—they are NEXP-complete in
the worst case with finite horizons [18]. Additionally, a
Dec-POMDP model requires an accurate joint model of all
plausible agent interactions that may not be available.

We propose a novel framework for state estimation of a
global signal in a multi-agent system that merges the practi-
cality of an HMM approach with the theoretical advantages
of a Dec-POMDP approach. Using this framework, we can
leverage observations of other agents as they perform de-
centralized planning and reconstruct a desired global signal.
To do this, we use an approximate single-agent behavior
model for each agent that models the dependence of their
behavior on the global signal. Using a dynamic Bayesian
network (DBN) [19] where each node and edge corresponds
to a component of a transition-independent Dec-MDP, we
can improve a direct estimate the signal in a robust, decision
theoretic manner. Finally, by providing a tractable graphical
model representation for inference, we are competitive with
the speed and reliability of prevailing methods, while dras-
tically expanding the scope and effectiveness of estimation.

Our main contributions are formalizing a framework for
agent-aware state estimation problems by framing the sce-
nario as a Dec-MDP and then demonstrating how to solve
for the state given a policy. Additionally, we provide an
exact DBN representation that facilitates fast and accurate
inference (Figure 2). We apply this approach to the prob-
lem of traffic light classification by an autonomous vehicle
when the traffic light may be obscured. We provide results
on a collection of challenging traffic light classification
examples [20], where the behavior of other vehicles is
used to obtain additional information about the state of the
intersection. Our results show that our approach outperforms
prevailing approaches that only use direct image data of the
traffic light.

II. BACKGROUND

We base our representation of an agent-aware state es-
timation problem on a factored n-agent decentralized par-
tially observable Markov decision process (Dec-POMDP). A
factored n-agent Dec-POMDP is a formal decision making
framework for reasoning in partially observable, stochastic

environments with n agents using a factored state represen-
tation [18], [21]. Despite not explicitly using the decision
making component of this formulation, it has a useful belief
update step that when combined with a known policy allows
for accurate and efficient state estimation.

A factored n-agent Dec-POMDP can be defined by a tuple
〈I,S,A, T ,R,Ω, O〉, where:
• I is a set of n agents.
• S = S0×S1×· · ·×Sn is a finite set of factored states:

a global state space S0 and a local state space Si>0 for
each agent i ∈ I.

• A = A1 × · · · × An is a finite set of joint actions: an
action set Ai for each agent i ∈ I.

• T : S × A × S → [0, 1] is a transition function that
represents the probability T (s′|s,~a) = Pr(s′|s,~a) of
reaching factored state s′ ∈ S after performing joint
action ~a ∈ A in factored state s ∈ S.

• R : S×A×S → R is a reward function that represents
the expected immediate reward R(s,~a, s′) of reaching
factored state s′ ∈ S after performing joint action ~a ∈ A
in factored state s ∈ S.

• Ω = Ω1 × · · · ×Ωn is a finite set of joint observations:
an observation set Ωi for each agent i ∈ I.

• O : A × S × Ω → [0, 1] is an observation function
that represents the probability O(~z|~a, s) = Pr(~z|~a, s) of
joint observation ~z ∈ Ω after taking joint action ~a ∈ A
and ending up in factored state s ∈ S.

If the current state s ∈ S can be determined by the latest joint
observation ~z ∈ Ω, a Dec-POMDP is called a Dec-MDP.

A factored n-agent Dec-MDP is locally fully observable
if each agent i’s observation fully determines their current
local state si and global state s0.

A factored n-agent Dec-MDP is transition independent if
the transition function T can be represented by a tuple of
transition probabilities (T0, T1, . . . , Tn) such that

T (s,~a, s′) = T0(s′0|s0)

n∏
i=1

Ti(s′i|si, ai).

Transition independent Dec-MDPs are simpler because they
obviate joint models.

III. AGENT-AWARE STATE ESTIMATION

We now introduce our approach to agent-aware state
estimation. In the agent-aware state estimation problem, a
neutral observer must recover a signal that may not always
be directly observable. In addition to the neutral observer,
there are multiple agents completing largely independent
tasks in an environment. The environment is composed of a
global state that is observed by all agents—which includes
the signal—and a local state that is observed by each agent.
By making noisy observations of the agents behaving in the
environment, the neutral observer must recover the signal.

To perform estimation, we start with a specific kind of
Dec-MDP, pair it with agent models, convert the problem



Algorithm 1 A method for agent-aware state estimation

1: function INITIALIZE(signalized Dec-MDP M, policy
set Π, observation set O, observation function Z)

2: AASEP A← CREATEAASEP(M,Π,O,Z)
3: DBN D← MAPAASEPTODBN(A)
4: return D

5: function INFERENCE(DBN D, observation history H,
time limit T , state prior P )

6: state estimate S̃← P
7: for t from 1 to T do
8: S̃← UPDATEESTIMATE(D, S̃,Ht) (sum product)
9: signal estimate ~Gt ← G̃ from S̃

10: return ~G

to a DBN, and update our estimate of the signal with the
most recent observation and previous estimate (summarized
by Algorithm 1). We consider each step of the algorithm
below, starting with the representation of the Dec-MDP.

First we cast the problem completed by the agents in
the language of a factored n-agent Dec-MDP. Because the
neutral observer is particularly concerned with the signal, we
factor the state space into two independent regions, which we
call signal space SG and agent space SN .

Definition 1. A factored n-agent Dec-MDP is signalized if
the state space S can be factored into SG×SN where SG =
S0, SN = S1 × · · · × Sn, and for every factored state s ∈
S, joint action ~a ∈ A, and successor state s′ ∈ S , the
transition function T can be written as a tuple of transition
probabilities (TG , TN ) such that

T (s′|s,~a) = TG(s′G |sG)TN (s′N |s,~a).

SG refers to the signal space, and SN refers to the agent
space. We call sG ∈ SG a signal.

Given a signalized factored n-agent Dec-MDP, we now
turn to a formal description of the agent-aware state es-
timation problem. Although a set of joint observations Ω
and observation function O has already been defined, these
specify the probability of each agent making an observation
of a state, not the probability of an independent observer
watching them solve the problem. Therefore, along with the
original problem solved by the agents and the policies used
by each agent, the problem of the neutral observer includes
a new set of observations and a new observation function.

Definition 2. An agent-aware state estimation problem
(AASEP) is defined by the tuple 〈M,Π,O,Z〉, where
• M is a signalized factored n-agent Dec-MDP,
• Π = {π1, . . . , πn} is a set of stochastic policy trees
πi : Ωt × Ai → [0, 1] such that πi(~h, ai) = Pr(ai|~h)
defines the probability that agent i takes action ai with
history ~h of t observations o1, o2, . . . , ot.

• O = O0 × O1 × · · · × On is a finite set of joint
observations: O0 are observations of a global state s0
and Oi>0 are observations of a local state si made by
the neutral observer for each agent i.

• Z = {Z0,Z1, . . . ,Zn} is a set of observation functions
Zi : Si ×Oi → [0, 1] such that Zi(si, oi) = Pr(oi|si)
defines the probability that the observer receives obser-
vation oi from state factor si for each agent i.

The objective of an AASEP is to estimate the current
signal s ∈ SG from a history H (composed of observations
from O) of neutral observations of agents behaving with
respect to the signal and their environment over time. Note
that in Definition 2 stochastic policy trees are used to model
agent behavior. When modeling real-world agents outside
of our control, there may be few guarantees about their
behavior. The policies of each agent may not even be optimal
or representative of the reward function of M, unless M
is carefully constructed. Agents may also have complex
interactions with each other that provide little information
on the signal. For these reasons, it is unnecessarily difficult
to construct an accurate joint model that is useful in practice.

It is possible to avoid modeling the complexity of these
interactions and allow for real-time inference by assuming
that the agents behave in a truly decentralized manner, have
full local observation, and operate in an environment that can
cleanly be separated into independent components; and then
working to ensure these assumptions hold on the agents you
select for inference. This allows us to specify a new agent-
aware state estimation problem where M is both signalized
and transition-independent:

Definition 3. A transition-independent agent-aware state
estimation problem (TI-AASEP) is an AASEP 〈M,Π,O,Z〉,
where M is transition-independent and locally fully ob-
servable, and Π is composed of policies that map from
S0×Si×Ai → [0, 1] such that πi(s0, si, ai) = Pr(ai|s0, si).

Note that any transition-independent n-agent Dec-MDP M
is also signalized, with SG = S0 and SN = S1 × · · · × Sn.
Moreover, Π in a TI-AASEP can be represented as a policy
tree where πi(~h, ai) = Pr(ai|oi). This is sufficient, as M
is locally fully observable. Thus, TI-AASEPs are AASEPs.

With a TI-AASEP representation, many difficulties of
the more general form are resolved. Local full observation
allows the use of a Markovian policy representation, and
the transition independence of M disallows interactions
between agents. This leads to a particularly tractable dy-
namic Bayesian network—one with discrete variables and
a constant-sized conditional probability table at each node.
Our observations O0 through On form evidence nodes,
and the global state space state factor S0 is our target
for inference. The probabilistic relationships between the
evidence nodes and S0 are characterized through observation
functions, transition functions, and stochastic agent policies.

Figure 2 shows the two-slice DBN representation of a
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Fig. 2: The generic two-slice dynamic Bayesian network of the
transition-independent agent-aware state estimation problem.

transition-independent AASEP. The purple nodes represent
an ordinary signal estimation HMM, which models a signal
s0’s relationship with a direct observation o0. In blue, we
have the (also standard) tracking task of locating agents in
our environment. In red, we have the agent model, which
relates the two tasks through a variable representing actions
that depend on both prior local state and signal. Due to the
causal dependence of all Oi on S0, we can improve our
estimate of S0 with far more data than if we were restricted
to only O0, direct observations of the signal.

To efficiently perform inference of the signal using the
DBN, we can convert it into a factor graph and perform the
sum-product message passing algorithm [22].

Proposition 1. Inference of a signal sG over t timesteps
using n agents in a TI-AASEP by applying the forward-
backwards sum-product message passing algorithm to the
DBN has worst-case time complexity O(tnk2), where each
node can take up to k different discrete values.

Proof (Sketch) 1. The factor-graph representation of our
t-timestep unrolled DBN has O(tn) factors and O(tn) vari-
ables, for each node and evidence-node respectively. Each
variable performs at most k additions, over at most a k-
dimensional distribution, taking O(k2) time to summarize
a constant number of incoming messages. As the factor
graph is a tree of finite width, exactly one message needs
to be passed per edge per direction for an exact solution.
Therefore, the algorithm executes in O(tnk2) time, with a
constant number of summarizations per variable.

The worst-case time complexity O(tnk2) provides a de-

sirable linear dependence on the number of agents. While
no proof is given, the worst-case time complexity of exact
inference in the general AASEP case has a superlinear
dependency on n. This, along with the impracticality of an
accurate joint model that models interactions between up to
n agents simultaneously, is unlikely to be reliable or real-
time except for very small n and t.

In practice, clearly interacting or obstructed agents can
be removed from inference. This justifies use of a locally-
observable transition-independent Dec-MDP, at the cost of
not always using every observation available. Even in the
limit of removing every agent, the model simplifies to an
HMM over the signal, which has been a standard approach
to signal estimation.

Proposition 2. Inference of a signal sG over t time steps
using zero agents in a TI-AASEP is equivalent to inference
of sG in an HMM, where S0 is the set of hidden states and
O0 is the set of observations.

Proof (Sketch) 2. An HMM is a tuple 〈S, T ,O,Z〉, where
S is a state space that transitions based on a transition
function T and emits observations from a set O based on
the observation function Z . With no agents, a TI-AASEP
only contains global state factors (all elements with nonzero
subscript disappears), and 〈S0, T0,O0,Z0〉 forms an HMM.

IV. EFFECTIVE TRAFFIC LIGHT CLASSIFICATION

In this section, we apply our approach to building and
solving agent-aware state estimation problems to the task of
traffic light classification in Figure 1. This requires defining
an n-agent Dec-MDP, creating a TI-AASEP, and building
the corresponding dynamic Bayesian network. Representing
traffic light classification in this way facilitates efficient and
accurate inference in real-time decision making problems.

We begin by constructing a signalized, transition-
independent locally fully observable n-agent Dec-MDP
M = 〈I,S,A, T ,R,Ω, O〉, where each observed, unob-
structed vehicle at the intersection (excluding our own) is
placed in the set of agents I. The global state in S0 in
this case only contains the signal, SG that represents the
traffic light system {RED,GREEN,YELLOW} for each legal
direction of travel (such that for any two intersecting legal
directions of travel, at most one is not red). Due to the
transition-independence requirement, any agent identified to
be interacting with a pedestrian or another obstruction should
be removed from I before inference.

Each agent i ∈ I has a corresponding local state
Si, which is the cross product of position discretized as
{ATINTERSECTION, TURNINGLEFT, DRIVINGSTRAIGHT,
TURNINGRIGHT} and velocity discretized as {NONE (0
m/s), LOW (1-5 m/s), HIGH (>5 m/s)}. We represent ac-
tions as a cross product between steering inputs {LEFT,
STRAIGHT, RIGHT} and accelerator inputs {MINUS, ZERO,
PLUS}. The transition probabilities Ti are specified via a
simple approximate physics-based model for position and



Fig. 3: A select scenario from the Argoverse dataset demonstrating an intersection where the light is obscured by glare. The ground truth
transition from red to green occurs at two seconds, and a black line at four seconds indicates the first visible human reaction. The delay
between the human and AASE response is primarily due to velocity and time discretization, both of which can be tightened.

velocity, taking into account steering inputs and accelerator
inputs in a straightforward manner. The transition proba-
bilities T0 for the global signal were composed of a high
probability self-transition, a low probability transition to the
next light configuration in a predefined sequence, and a near
zero probability for out-of-sequence light changes.

In order to construct the TI-AASEP, a set of joint obser-
vations O representing vision of the light and other vehicles
was required. Each Oi>0 equals Si>0, as LiDAR was used to
reconstruct estimates of position and velocity directly, which
were then discretized. As vehicles can only directly observe
the traffic light controlling their direction of travel, O0 =
{GREEN,YELLOW,RED}. With these observations alone,
the full global signal cannot be reconstructed, as it includes
a separate light for each direction of travel. In addition, we
defined a set of observation functions Z to account for sensor
uncertainty and obstructions. We specified Z0 to be 92%
accurate and Zi>0 at 95%. The final component is Π, the set
of policies that map local states to actions. Each agent policy
πi was specified via a simple driver model that assumes
drivers are fairly stochastic but largely attempt to obey traffic
laws. Using the constructed DBN, we are able to perform
inference as specified in Algorithm 1.

V. EXPERIMENTS

We compare our approach against an HMM smoothed
vision baseline on a real world collection of rare traffic light

occurrences. Our baseline vision model is a YOLOv3 CNN
architecture, which we trained on the Bosch Small Traffic
Lights dataset [23], [24] that is smoothed with a simple traffic
light HMM similar to prior work [16]. To perform an ablation
study, we remove the direct CNN traffic light observations
from our DBN so that the agent-based component can be
evaluated separately. Each model is evaluated on a small
collection of challenging four-way intersection scenarios
from the Argoverse dataset [20]. The YOLOv3 + HMM
model runs on 30 Hz image data, and the AASE models
run on a 1 Hz sample of the 10 Hz LiDAR data.

Figure 3 shows the results of our approach on a chal-
lenging example where glare from the sun has completely
obscured the traffic light signal. The YOLOv3 + HMM
model fails to detect any visual signal until 9 seconds into
the scenario. Until then, the HMM simply outputs the prior
distribution, indicating total failure. Both AASE approaches
have a much higher confidence in the red light and detect the
transition to green sooner due to their observations of other
cars not obscured by the glare.

VI. DISCUSSION

Our results highlight the advantage that our approach
offers in scenarios where direct observation of a global signal
has failed. In Figure 3, YOLO cannot detect the traffic light
for the first 9 seconds due to glare from the sun. Thus,
if the AV were using YOLO by itself, it would not have



driven into the intersection and discovered that the light was
green. By contrast, the AASE framework not only has a
high confidence of a red light at the start of the scenario
but also reaches a high confidence of a green light after 6
seconds, only 2 seconds after the first car begins to move.
The delay between the ground truth and the AASE models
is mostly due to the delayed reaction of other drivers: we see
that no other vehicle moves until 4 seconds (denoted by a
black bar on the ground truth graph in Figure 3). Finally, for
the ablation study, we remove YOLO observations from the
AASE model. Without a direct observation of the light or
any vehicles, the probability of a green light decays and the
probabilities of yellow and red rise over time as expected.
However, once YOLO is added, its confidence remains high
even after the vehicles disappear from the intersection due
to the direct observations that occur in those time steps.

Overall, this example demonstrates the benefits of using
an encompassing framework like AASE. Practically, it takes
advantage of information already collected by AVs (such as
the position of other vehicles) and allows the use of sensors
with nearly independent failure modes. In particular, methods
such as LiDAR and radar are robust to glare. Radar is robust
in snow and rain, and even cameras are far less likely to have
multiple entire vehicles obstructed by glare or rain than the
light itself. However, our method is not simply sensor fusion;
we do not require the use of additional sensor modalities,
nor do we use multiple sensors to directly sense the same
object. Rather, we take advantage of the unique benefits of
each sensor modality, combine all of the information from
various sensors with other AV capabilities, such as predictive
driver models, and form a holistic understanding of the state
of a given intersection tractably in real-time.

VII. CONCLUSION

We propose a model for traffic light classification that
accounts for not only direct observations of a traffic light
but also the behavior of other rational actors. Using this
approach, we can reason about the state of the traffic light
even when the light may be obstructed in traditionally data
poor scenarios. An analysis of this approach reveals that it
collapses to standard methods that use a CNN and HMM
in the presence of no agents, linearly scales in complexity
in the number of agents, and results in theoretically correct
inference from a decision making perspective. This offers
a strict improvement over current methods, by using multi-
agent behavior as a backup when ordinary perception fails.
We show that our model successfully classifies a traffic light
in real world scenarios when glare from the sun causes a
CNN to fail. Finally, because relying on agent observations
has different failure modes than direct observations, the
scenarios in which state estimation fails can be reduced
drastically without adding new sensing modalities.
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